1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Generic [Cipher Feedback (CFB)][1] mode implementation.
//!
//! This crate implements CFB as a [self-synchronizing stream cipher][2].
//!
//! # Security Warning
//! This crate does not ensure ciphertexts are authentic! Thus ciphertext integrity
//! is not verified, which can lead to serious vulnerabilities!
//!
//! # Examples
//! ```
//! use aes::Aes128;
//! use cfb_mode::Cfb;
//! use cfb_mode::cipher::{NewStreamCipher, StreamCipher};
//! use hex_literal::hex;
//!
//! type AesCfb = Cfb<Aes128>;
//!
//! let key = b"very secret key.";
//! let iv = b"unique init vect";
//! let plaintext = b"The quick brown fox jumps over the lazy dog.";
//! let ciphertext = hex!("
//!     8f0cb6e8 9286cd02 09c95da4 fa663269
//!     bf7f286d 76820a4a f6cd3794 64cb6765
//!     8c764fa2 ce107f96 e1cf1dcd
//! ");
//!
//! let mut data = plaintext.to_vec();
//! // encrypt plaintext
//! AesCfb::new_var(key, iv).unwrap().encrypt(&mut data);
//! assert_eq!(data, &ciphertext[..]);
//! // and decrypt it back
//! AesCfb::new_var(key, iv).unwrap().decrypt(&mut data);
//! assert_eq!(data, &plaintext[..]);
//!
//! // CFB mode can be used with streaming messages
//! let mut cipher = AesCfb::new_var(key, iv).unwrap();
//! for chunk in data.chunks_mut(3) {
//!     cipher.encrypt(chunk);
//! }
//! assert_eq!(data, &ciphertext[..]);
//! ```
//!
//! [1]: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
//! [2]: https://en.wikipedia.org/wiki/Stream_cipher#Self-synchronizing_stream_ciphers

#![no_std]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![warn(missing_docs, rust_2018_idioms)]

pub use cipher;

use cipher::{
    block::{BlockCipher, NewBlockCipher, ParBlocks},
    generic_array::{typenum::Unsigned, GenericArray},
    stream::{FromBlockCipher, StreamCipher},
};
use core::slice;

/// CFB self-synchronizing stream cipher instance.
pub struct Cfb<C: BlockCipher> {
    cipher: C,
    iv: GenericArray<u8, C::BlockSize>,
    pos: usize,
}

impl<C> FromBlockCipher for Cfb<C>
where
    C: BlockCipher + NewBlockCipher,
{
    type BlockCipher = C;
    type NonceSize = C::BlockSize;

    fn from_block_cipher(cipher: C, iv: &GenericArray<u8, Self::NonceSize>) -> Self {
        let mut iv = iv.clone();
        cipher.encrypt_block(&mut iv);
        Self { cipher, iv, pos: 0 }
    }
}

impl<C: BlockCipher> StreamCipher for Cfb<C> {
    fn encrypt(&mut self, mut data: &mut [u8]) {
        let bs = C::BlockSize::USIZE;
        let n = data.len();

        if n < bs - self.pos {
            xor_set1(data, &mut self.iv[self.pos..self.pos + n]);
            self.pos += n;
            return;
        }

        let (left, right) = { data }.split_at_mut(bs - self.pos);
        data = right;
        let mut iv = self.iv.clone();
        xor_set1(left, &mut iv[self.pos..]);
        self.cipher.encrypt_block(&mut iv);

        let mut chunks = data.chunks_exact_mut(bs);
        for chunk in &mut chunks {
            xor_set1(chunk, iv.as_mut_slice());
            self.cipher.encrypt_block(&mut iv);
        }

        let rem = chunks.into_remainder();
        xor_set1(rem, iv.as_mut_slice());
        self.pos = rem.len();
        self.iv = iv;
    }

    fn decrypt(&mut self, mut data: &mut [u8]) {
        let bs = C::BlockSize::to_usize();
        let pb = C::ParBlocks::to_usize();
        let n = data.len();

        if n < bs - self.pos {
            xor_set2(data, &mut self.iv[self.pos..self.pos + n]);
            self.pos += n;
            return;
        }
        let (left, right) = { data }.split_at_mut(bs - self.pos);
        data = right;
        let mut iv = self.iv.clone();
        xor_set2(left, &mut iv[self.pos..]);
        self.cipher.encrypt_block(&mut iv);

        let bss = bs * pb;
        if pb != 1 && data.len() >= bss {
            let mut iv_blocks: ParBlocks<C> =
                unsafe { (&*(data.as_ptr() as *const ParBlocks<C>)).clone() };
            self.cipher.encrypt_blocks(&mut iv_blocks);
            let (block, r) = { data }.split_at_mut(bs);
            data = r;
            xor(block, iv.as_slice());

            while data.len() >= 2 * bss - bs {
                let (blocks, r) = { data }.split_at_mut(bss);
                data = r;
                let mut next_iv_blocks: ParBlocks<C> = unsafe {
                    let ptr = data.as_ptr().offset(-(bs as isize));
                    (&*(ptr as *const ParBlocks<C>)).clone()
                };
                self.cipher.encrypt_blocks(&mut next_iv_blocks);

                xor(blocks, unsafe {
                    let ptr = iv_blocks.as_mut_ptr() as *mut u8;
                    slice::from_raw_parts(ptr, bss)
                });
                iv_blocks = next_iv_blocks;
            }

            let n = pb - 1;
            let (blocks, r) = { data }.split_at_mut(n * bs);
            data = r;
            let chunks = blocks.chunks_mut(bs);
            for (iv, block) in iv_blocks[..n].iter().zip(chunks) {
                xor(block, iv.as_slice())
            }
            iv = iv_blocks[n].clone();
        }

        let mut chunks = data.chunks_exact_mut(bs);
        for chunk in &mut chunks {
            xor_set2(chunk, iv.as_mut_slice());
            self.cipher.encrypt_block(&mut iv);
        }

        let rem = chunks.into_remainder();
        xor_set2(rem, iv.as_mut_slice());
        self.pos = rem.len();
        self.iv = iv;
    }
}

#[inline(always)]
fn xor(buf1: &mut [u8], buf2: &[u8]) {
    for (a, b) in buf1.iter_mut().zip(buf2) {
        *a ^= *b;
    }
}

#[inline(always)]
fn xor_set1(buf1: &mut [u8], buf2: &mut [u8]) {
    for (a, b) in buf1.iter_mut().zip(buf2) {
        let t = *a ^ *b;
        *a = t;
        *b = t;
    }
}

#[inline(always)]
fn xor_set2(buf1: &mut [u8], buf2: &mut [u8]) {
    for (a, b) in buf1.iter_mut().zip(buf2) {
        let t = *a;
        *a ^= *b;
        *b = t;
    }
}