1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! The [MD5][1] hash function.
//!
//! [1]: https://en.wikipedia.org/wiki/MD5

#![no_std]
extern crate generic_array;
extern crate fake_simd as simd;
extern crate byte_tools;
extern crate digest;
extern crate digest_buffer;

pub use digest::Digest;
use byte_tools::{write_u32_le, read_u32v_le};
use digest_buffer::{DigestBuffer};
use simd::u32x4;
use generic_array::GenericArray;
use generic_array::typenum::{U16, U64};


mod consts;
use consts::{C1, C2, C3, C4, S};

type BlockSize = U64;
type Block = GenericArray<u8, BlockSize>;

/// A structure that represents that state of a digest computation for the MD5
/// digest function
#[derive(Copy, Clone)]
struct Md5State {
    s: u32x4,
}

impl Md5State {
    fn process_block(&mut self, input: &Block) {
        fn f(u: u32, v: u32, w: u32) -> u32 { (u & v) | (!u & w) }

        fn g(u: u32, v: u32, w: u32) -> u32 { (u & w) | (v & !w) }

        fn h(u: u32, v: u32, w: u32) -> u32 { u ^ v ^ w }

        fn i(u: u32, v: u32, w: u32) -> u32 { v ^ (u | !w) }

        fn op_f(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
            w.wrapping_add(f(x, y, z))
                .wrapping_add(m)
                .rotate_left(s)
                .wrapping_add(x)
        }

        fn op_g(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
            w.wrapping_add(g(x, y, z))
                .wrapping_add(m)
                .rotate_left(s)
                .wrapping_add(x)
        }

        fn op_h(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
            w.wrapping_add(h(x, y, z))
                .wrapping_add(m)
                .rotate_left(s)
                .wrapping_add(x)
        }

        fn op_i(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
            w.wrapping_add(i(x, y, z))
                .wrapping_add(m)
                .rotate_left(s)
                .wrapping_add(x)
        }

        let u32x4(mut a, mut b, mut c, mut d) = self.s;

        let mut data = [0u32; 16];

        read_u32v_le(&mut data, input);

        // FIXME: replace [0, 4, 8, 12] with (0..16).step_by(4)
        // after stabilization

        // round 1
        for i in [0, 4, 8, 12].iter().cloned() {
            a = op_f(a, b, c, d, data[i].wrapping_add(C1[i]), 7);
            d = op_f(d, a, b, c, data[i + 1].wrapping_add(C1[i + 1]), 12);
            c = op_f(c, d, a, b, data[i + 2].wrapping_add(C1[i + 2]), 17);
            b = op_f(b, c, d, a, data[i + 3].wrapping_add(C1[i + 3]), 22);
        }

        // round 2
        let mut t = 1;
        for i in [0, 4, 8, 12].iter().cloned() {
            let q = data[t & 0x0f].wrapping_add(C2[i]);
            a = op_g(a, b, c, d, q, 5);
            let q = data[(t + 5) & 0x0f].wrapping_add(C2[i + 1]);
            d = op_g(d, a, b, c, q, 9);
            let q = data[(t + 10) & 0x0f].wrapping_add(C2[i + 2]);
            c = op_g(c, d, a, b, q, 14);
            let q = data[(t + 15) & 0x0f].wrapping_add(C2[i + 3]);
            b = op_g(b, c, d, a, q, 20);
            t += 20;
        }

        // round 3
        t = 5;
        for i in [0, 4, 8, 12].iter().cloned() {
            let q = data[t & 0x0f].wrapping_add(C3[i]);
            a = op_h(a, b, c, d, q, 4);
            let q = data[(t + 3) & 0x0f].wrapping_add(C3[i + 1]);
            d = op_h(d, a, b, c, q, 11);
            let q = data[(t + 6) & 0x0f].wrapping_add(C3[i + 2]);
            c = op_h(c, d, a, b, q, 16);
            let q = data[(t + 9) & 0x0f].wrapping_add(C3[i + 3]);
            b = op_h(b, c, d, a, q, 23);
            t += 12;
        }

        // round 4
        t = 0;
        for i in [0, 4, 8, 12].iter().cloned() {
            let q = data[t & 0x0f].wrapping_add(C4[i]);
            a = op_i(a, b, c, d, q, 6);
            let q = data[(t + 7) & 0x0f].wrapping_add(C4[i + 1]);
            d = op_i(d, a, b, c, q, 10);
            let q = data[(t + 14) & 0x0f].wrapping_add(C4[i + 2]);
            c = op_i(c, d, a, b, q, 15);
            let q = data[(t + 21) & 0x0f].wrapping_add(C4[i + 3]);
            b = op_i(b, c, d, a, q, 21);
            t += 28;
        }

        self.s = self.s + u32x4(a, b, c, d);
    }
}

impl Default for Md5State {
    fn default() -> Self { Md5State{ s: S } }
}

/// The MD5 Digest algorithm
#[derive(Copy, Clone, Default)]
pub struct Md5 {
    length_bytes: u64,
    buffer: DigestBuffer<BlockSize>,
    state: Md5State,
}


impl Md5 {
    fn finalize(&mut self) {
        let self_state = &mut self.state;
        self.buffer.standard_padding(8, |d: &Block| {
            self_state.process_block(d);
        });
        write_u32_le(self.buffer.next(4), (self.length_bytes << 3) as u32);
        write_u32_le(self.buffer.next(4), (self.length_bytes >> 29) as u32);
        self_state.process_block(self.buffer.full_buffer());
    }
}

impl digest::Input for Md5 {
    type BlockSize = BlockSize;

    fn digest(&mut self, input: &[u8]) {
        // Unlike Sha1 and Sha2, the length value in MD5 is defined as
        // the length of the message mod 2^64 - ie: integer overflow is OK.
        self.length_bytes += input.len() as u64;
        let self_state = &mut self.state;
        self.buffer.input(input, |d: &Block| {
            self_state.process_block(d);
        });
    }
}

impl digest::FixedOutput for Md5 {
    type OutputSize = U16;

    fn fixed_result(mut self) -> GenericArray<u8, Self::OutputSize> {
        self.finalize();

        let mut out = GenericArray::default();
        write_u32_le(&mut out[0..4], self.state.s.0);
        write_u32_le(&mut out[4..8], self.state.s.1);
        write_u32_le(&mut out[8..12], self.state.s.2);
        write_u32_le(&mut out[12..16], self.state.s.3);
        out
    }
}